Neural Networks and Logical Reasoning Systems: A Translation Table
نویسندگان
چکیده
A correspondence is established between the basic elements of logic reasoning systems (knowledge bases, rules, inference and queries) and the structure and dynamical evolution laws of neural networks. The correspondence is pictured as a translation dictionary which might allow to go back and forth between symbolic and network formulations, a desirable step in learning-oriented systems and multicomputer networks. In the framework of Horn clause logics, it is found that atomic propositions with n arguments correspond to nodes with nth order synapses, rules to synaptic intensity constraints, forward chaining to synaptic dynamics and queries either to simple node activation or to a query tensor dynamics.
منابع مشابه
Journal of Applied Logic Special Volume on Neural-Symbolic Systems
The past 25 years have witnessed a tremendous progress in the nature and scope of Logic and its application in Computing Science. At the same time, distributed learning systems and, in particular, Neural Networks, have been playing a central role in the development of Artificial Intelligence (AI). Notwithstanding, human beings do not use these techniques in isolation, but in an integrated way. ...
متن کاملConnectionist modal logic: Representing modalities in neural networks
Modal logics are amongst the most successful applied logical systems. Neural networks were proved to be effective learning systems. In this paper, we propose to combine the strengths of modal logics and neural networks by introducing Connectionist Modal Logics (CML). CML belongs to the domain of neural-symbolic integration, which concerns the application of problem-specific symbolic knowledge w...
متن کاملApproximate Reasoning about Complex Objects in Distributed Systems: Rough Mereological Formalization ?
We propose an approach to approximate reasoning by systems of intelligent agents based on the paradigm of rough mereology. In this approach, the knowledge of each agent is formalized as an information system (a data table) from which similarity measures on objects manipulated by this agent are inferred. These similarity measures are based on rough mereological inclusions which formally render d...
متن کاملSymbolic Knowledge Extraction using Łukasiewicz Logics
This work describes a methodology that combines logic-based systems and connectionist systems. Our approach uses finite truth-valued Lukasiewicz logic, wherein every connective can be defined by a neuron in an artificial network [1]. This allowed the injection of first-order formulas into a network architecture, and also simplified symbolic rule extraction. For that we trained a neural networks...
متن کاملThe Application of Combined Fuzzy Clustering Model and Neural Networks to Measure Valuably of Bank Customers
Currently, acquisition of resources in banks is subject to attraction of the resources of banking customers. Meanwhile, the Bank’s valuable customers are one of the best resources to make profit for banks. Several different models are introduced for evaluation of profitability of the customers; but most of them are classical models and they are unable to evaluate the customers in complete and o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of neural systems
دوره 11 2 شماره
صفحات -
تاریخ انتشار 2001